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1Department of Electrical and Computer Engineering, University of Minnesota,
Minneapolis, MN 55455, USA

2Department of Mechanical Engineering, University of California, Santa Barbara,
CA 93106-5070, USA

(Received 21 February 2004 and in revised form 28 November 2004)

We study the linearized Navier–Stokes (LNS) equations in channel flows from an
input–output point of view by analysing their spatio-temporal frequency responses.
Spatially distributed and temporally varying body force fields are considered as
inputs, and components of the resulting velocity fields are considered as outputs
into these equations. We show how the roles of Tollmien–Schlichting (TS) waves,
oblique waves, and streamwise vortices and streaks in subcritical transition can be
explained as input–output resonances of the spatio-temporal frequency responses. On
the one hand, we demonstrate the effectiveness of input field components, and on
the other, the energy content of velocity perturbation components. We establish that
wall-normal and spanwise forces have much stronger influence on the velocity field
than streamwise force, and that the impact of these forces is most powerful on the
streamwise velocity component. We show this using the relative scaling of the different
input–output system components with the Reynolds number. We further demonstrate
that for the streamwise constant perturbations, the spanwise force localized near the
lower wall has, by far, the strongest effect on the evolution of the velocity field.

1. Introduction
In this paper, we analyse the dynamical properties of the Navier–Stokes (NS)

equations with spatially distributed and temporally varying body force fields. These
fields are considered as inputs, and different combinations of the resulting velocity
fields are considered as outputs. This input–output analysis can in principle be done
in any geometry and for the full nonlinear NS equations. In such generality, however,
it is difficult to obtain useful results. We therefore concentrate on the geometry of
channel flows, and the input–output dynamics of the linearized Navier–Stokes (LNS)
equations.

The terminology here might be a little confusing. While we are concerned with
the dynamical behaviour of the linearized NS equations, input–output analysis of the
LNS is related, but not equivalent, to linear hydrodynamic stability analysis. In the
latter, the objective is to characterize exponentially growing (that is, unstable) normal
modes. As we will illustrate, input–output analysis reveals unstable normal modes,
as well as transient growth, disturbance amplification, and so-called pseudospectral
modes. This analysis has very close mathematical connections with the work on
transient energy growth (also known as non-normal growth) (Gustavsson 1991;
Butler & Farrell 1992; Reddy & Henningson 1993), pseudospectral analysis (Trefethen
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et al. 1993), and amplification of stochastic excitations (Farrell & Ioannou 1993b;
Bamieh & Dahleh 2001). In some sense, it can also be considered as a type of
receptivity analysis, although this connection is more qualitative. Rather than studying
the receptivity of a boundary layer to upstream or free-stream disturbances as is
commonly done (Goldstein & Hultgren 1989; Hill 1995; Luchini & Bottaro 1998), our
input–output analysis is the receptivity of channel flows to spatially and temporally
distributed body forces. The latter is mathematically and computationally more
tractable, yet appears to have many of the qualitative features of boundary-layer
receptivity analysis.

Our work is greatly influenced by recent work in what has become known as
transient growth mechanisms for bypass transitions. We will only briefly outline some
of the more closely related work here, and refer the reader to Schmid & Henningson
(2001) and the references therein for a fuller discussion. The main point of departure
of this work from classical linear hydrodynamic stability is the fact that the latter is
concerned solely with the existence of exponentially growing modes. In other words,
it is essentially an asymptotic analysis of infinite time limits. In certain flows, however,
transient (that is, finite-time) phenomena appear to play a significant role. While the
possibility of transient growth has long been recognized (Orr 1907), it is only in the
past two decades that effective mathematical methods have been used to analyse it.
In Butler & Farrell (1992) and Reddy & Henningson (1993), initial states with the
largest transient energy growth in subcritical flows were discovered using a singular
value analysis. These ‘worst case’ initial states lead to flow structures that resemble
streamwise vortices and streaks. A somewhat different analysis is done by computing
the pseudospectrum rather than the spectrum of the generating dynamics (Trefethen
et al. 1993), and the most unstable pseudospectral modes turn out to be related to
streamwise vortices and streaks. A third analysis method (Farrell & Ioannou 1993b;
Bamieh & Dahleh 2001) studies the most energetic response of the linearized Navier–
Stokes equations to stochastic excitation. Yet again, the most energetically excited
flow structures appear to resemble streamwise vortices and streaks. The common
theme between the three methods is that a certain norm of the perturbed flow state is
used (namely kinetic energy density), and the responses with respect to various types
of uncertainties are analysed.

Previous work on ‘non-normal growth’ has tended to emphasize transient energy
growth as a mechanism that might lead to exiting a region of attraction of the
full nonlinear NS equations. In this paper, however, (and similarly in Farrell &
Ioannou 1993b; Bamieh & Dahleh 2001), we adopt a different perspective in which
the LNS are considered with uncertain body forces, initial conditions are set to zero,
and thus flow-field perturbations are solely due to excitation by body forces. We
show that the effects of these body forces on flow perturbations scale unfavourably
with the Reynolds number. Depending on the force polarization and on how flow
perturbations are measured, these effects scale with R, R2 or R3. Thus for large enough
Reynolds numbers, the effects of even tiny body forces will become appreciable. It
is not difficult to argue that any flow condition has some degree of uncertainty
in either flow geometry, base profile and/or non-flat walls. In carefully controlled
experiments, these uncertainties may be very small. However, it appears that the
NS equations (both the linearized and full versions) in wall-bounded shear flows
are exceedingly sensitive to small amounts of such uncertainty. It is thus important
to analyse the equations while taking such uncertainties into account. We borrow
heavily from the field of robust control theory (Zhou, Doyle & Glover 1996), where
mathematical tools for the analysis and control of uncertain dynamical systems have
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Figure 1. Three-dimensional flow between two parallel infinitely long plates.

been developed. Indeed, other researchers (Bewley & Liu 1998; Lee et al. 2001; Kim
2003; Högberg et al. 2003a, b) have been successful in designing linear controllers
based on these methods for either linearized or nonlinear flow dynamics in direct
numerical simulations (DNS).

Our paper is organized as follows: in § 2, we give a dynamical description of the
flow fluctuations, introduce a notion of a spatio-temporal frequency response, and
define different frequency response quantities that can be determined based on it. In
§ 3, we present different portions of the spatio-temporal frequency response for subcri-
tical Poiseuille flow at R = 2000. One of our main objectives is to illustrate the input–
output resonances from forcing inputs in different directions to different components
of the velocity field. The most amplified input–output resonances turn out to resemble
streamwise vortices and streaks and oblique waves. A comparison between them and
internal resonances (Tollmien–Schlichting (TS) waves) is given using the frequency
response. One of our other conclusions is that the spanwise and wall-normal forces are
much more influential on flow perturbations than the streamwise force. Furthermore,
the impact of these forces is most powerful on the streamwise velocity component.
Analytical explanations for these observations as well as formulae for the dependence
of these influences on the Reynolds number are given in § 4. In § 5, we study
the effectiveness of the near-wall inputs for streamwise constant three-dimensional
perturbations. We demonstrate analytically that the spanwise force has, by far, the
biggest impact on the evolution of the velocity field components. These facts were
recently observed in experimental and numerical studies of flow control using the
Lorentz force (Henoch & Stace 1995; Crawford & Karniadakis 1997; Berger et al.
2000; Du & Karniadakis 2000; Du, Symeonidis & Karniadakis 2002). We conclude
by remarking on the utility of frequency response analysis, and, more generally,
analysis of effects of uncertainty on transitional and fully turbulent flows and their
control.

2. Dynamical description of flow fluctuations and input–output analysis
We consider the incompressible LNS equations in channel-flow geometry shown in

figure 1. These equations describe the dynamics (up to first order) of velocity and
pressure fluctuations u and p, respectively. These are fluctuations about a nominal
flow condition (ū, p̄). The equations can be written as

∂t u = −∇ūu − ∇uū − ∇p +
1

R
�u + d, (2.1a)

0 = ∇ · u, (2.1b)

where u := [u v w]T is the fluctuation velocity vector, p is pressure fluctuation, d is a
spatially distributed and temporally varying body force, R is the Reynolds number, ∇
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is the gradient, � := ∇2 is the Laplacian, and the operator ∇u is given by ∇u := u·∇.
Each field is assumed to vary both temporally and spatially, e.g. d = d(x, y, z, t). The
additional ingredient in these equations is the body force field d which we consider
to be an ‘external’ input or excitation in these equations.

We rewrite these equations in a form that is more amenable to the input–output
analysis. This is done by a standard conversion (Kim, Moin & Moser 1987) into an
evolution equation for the wall-normal velocity (v) and vorticity (ωy) fields. At any
point in time, the remaining velocity and vorticity fields can be expressed in terms of
these two fields using spatial differential operators. This conversion is done as follows.
An equation for p can be obtained by applying the divergence operator to (2.1a) and
combining the resulting equation with (2.1b). In this way, p can be eliminated from
(2.1), and we can obtain a PDE for the evolution of v. A PDE for the evolution of
ωy is obtained by taking the curl of (2.1a). This yields two PDEs for the evolution of
wall-normal velocity v and vorticity ωy that involve only v, ωy and d. If nominal flow
ū is constant in the x and z directions, then the underlying operators have coefficients
that are constant in these directions. In this situation, the analysis is greatly simplified
by applying a Fourier transform in horizontal (streamwise and spanwise) directions.
The overall equations can then be re-written as

∂tψ(kx, y, kz, t) = [A(kx, kz) ψ(kx, kz, t)](y) + [B(kx, kz) d(kx, kz, t)](y), (2.2a)

φ(kx, y, kz, t) = [C(kx, kz) ψ(kx, kz, t)](y), (2.2b)

where ψ:= [ψ1 ψ2]
T = [v ωy]

T , d:= [dx dy dz]
T , φ:= u = [u v w]T , and A, B and C

are operators defined below. Note that the forces in the streamwise, wall-normal and
spanwise directions are represented by dx , dy and dz, respectively, and that we use the
same symbol to denote a field and its Fourier transform. The reason for writing the
equations in the above form is to regard the vector field ψ as the ‘state’ of the system
(from which any other field can be determined at a given point in time), d as an
input, and φ as an output. This is the so-called state-space form of driven dynamical
systems common in the dynamics and controls literature (Curtain & Zwart 1995). We
have chosen here the velocity field vector as the output. It is also possible to chose
any combination of velocity and vorticity fields as an output, resulting in different
choices for operator C.

For a nominal flow condition (ū, p̄) := ([U (y) 0 0]T , p̄(x)), operators A, B and C
are given by

A:=

[A11 0

A21 A22

]
:=

[
(−ikx�

−1U� + ikx�
−1U ′′ + (1/R)�−1�2) 0

(−ikzU
′) (−ikxU + (1/R)�)

]
,

(2.3a)

B :=
[
Bx By Bz

]
:=

[
�−1 0

0 I

] [−ikx∂y −
(
k2

x + k2
z

)
−ikz∂y

ikz 0 −ikx

]
, (2.3b)

C :=


Cu

Cv

Cw


 :=

1

k2
x + k2

z




ikx∂y −ikz

k2
x + k2

z 0

ikz∂y ikx


, (2.3c)

where U ′ := dU (y)/dy, and � := ∂yy − k2
x − k2

z . Note that each of the operators A,
B and C is one-dimensional (in the wall-normal direction). All three operators (and
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consequently system (2.2)) are parameterized by three parameters: the streamwise and
spanwise wavenumbers kx and kz, and the Reynolds number R. Finally, the boundary
conditions on v and ωy are derived from the original no-slip boundary conditions
and they are given by

v(kx, ±1, kz, t) = ∂yv(kx, ±1, kz, t) = ωy(kx, ±1, kz, t) = 0, ∀ kx, kz ∈ �, ∀ t � 0.

(2.4)

We note here that the LNS equations with input (2.2) that we use are qualitatively
similar to those used by Farrell & Ioannou (1993b), but with an important difference.
In Farrell & Ioannou (1993b), forcing was introduced directly to the right-hand side
of the (v, ωy) equations. In our set-up, the forcing is introduced in the more basic
LNS equations, which results in a more transparent interpretation of the excitation
as body forces, and allows for a detailed analysis of the effects of polarized forces.
The mathematical difference is that the forcing in Farrell & Ioannou (1993b) has only
two components and enters the equations through a different operator B.

In the sequel, we will also analyse the situation in which external excitation d has
an intensity that varies with the wall-normal direction. This is used to model the
situation where the forcing fields have higher intensity near walls, as might be the
case in certain flow-control problems. A more general form for the forcing fields is

d(x, y, z, t) :=


κx(y) 0 0

0 κy(y) 0

0 0 κz(y)


 d0(x, y, z, t) =




κx(y) dx0(x, y, z, t)

κy(y) dy0(x, y, z, t)

κz(y) dz0(x, y, z, t)


, (2.5)

where κs(y) (s = x, y, or z) are certain pre-specified functions of y representing the
relative intensities of the forcing fields in the wall-normal direction, and d0(x, y, z, t)
is an arbitrary function of x, y, z and t with a spatial Fourier transform d0(kx, y, kz, t).
Note that d0 is considered ‘uniformly’ distributed in the wall-normal direction in a
sense to be described in the sequel. It is convenient to incorporate the functions κs in
operator B by defining

B0 := B


κx 0 0

0 κy 0

0 0 κz


 = [Bxκx Byκy Bzκz] =: [Bx0 By0 Bz0].

Then, (2.2) can be rewritten as

∂tψ(kx, y, kz, t) = [A(kx, kz) ψ(kx, kz, t)](y) + [B0(kx, kz) d0(kx, kz, t)](y), (2.6a)

φ(kx, y, kz, t) = [C(kx, kz) ψ(kx, kz, t)](y). (2.6b)

Note that the equations are again in the state-space form, but with a different operator
acting on the input. We respectively refer to systems (2.2) and (2.6) as the systems
with ‘unstructured’ and ‘structured’ external excitations. This reflects the fact that in
the latter, operator B has the wall-normal intensity profile of the forcing field built
into it.

Certain mathematical considerations are required for a precise description of the
above operators. They are included in Appendix A.

2.1. Spatio-temporal frequency responses

We will study the spatio-temporal frequency response of the LNS with input (2.2).
We introduce this notion as follows. Let the input to (2.2) be a field that is harmonic
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in the t , x, and z variables, that is of the form

d(x, y, z, t) = d̄(y) ei(k̄xx+k̄zz+ω̄t),

where d̄(y) is some function of y. Assuming stability of generator A, it can then be
shown that the output is also harmonic in the same variables and is determined by

φ(x, y, z, t) = [H(k̄x, k̄z, ω̄) d̄](y) ei(k̄xx+k̄zz+ω̄t), (2.7)

where operator H(kx, kz, ω) is given by

H(kx, kz, ω) = C(kx, kz)(iωI − A(kx, kz))
−1B(kx, kz). (2.8)

There are two possible interpretations of this. If this harmonic input is assumed to
act over the time interval −∞ < t < ∞, then initial states do not play a role, and the
output is precisely given by (2.7). If, on the other hand, the harmonic input is assumed
to act over 0 � t < ∞ with zero initial state (ψ(t = 0) = 0), then the output limits
to (2.7) as transients asymptotically die out (owing to stability) in the ‘steady-state’
(that is, as t → ∞).

Note that for each (kx, kz, ω), H(kx, kz, ω) is a one-dimensional operator in the
wall-normal direction. The operator-valued function H(kx, kz, ω) in (2.8) is called
the spatio-temporal frequency response of system (2.2). It is a function of temporal
frequency ω and two spatial wavenumbers kx and kz. Another interpretation of this
function is that it maps the Fourier transform of the input to the Fourier transform
of the output, i.e.

φ(kx, y, kz, ω) = [H(kx, kz, ω)d(kx, ·, ky, ω)](y). (2.9)

The frequency response (2.8) contains a large amount of information about the
dynamical behaviour of system (2.2). It is not always straightforward to visualize
H since it is a function of three frequency variables, and is also operator valued
(or matrix valued after a suitable discretization in the wall-normal direction). In this
paper, we are mainly interested in the behaviour of the response as a function of
the two spatial wave numbers. Therefore, we must somehow aggregate the effects
of temporal and wall-normal dynamics. This can be done in a variety of ways. We
choose to use the so-called H2 and H∞ system norms (Zhou et al. 1996). These are
input–output norms of dynamical systems of the type (2.2), and they quantify the
‘amplification’ or ‘gain’ of a system, or in other words, the relative size of the output
to the input.

The H2 norm is defined by[
‖H‖2

2

]
(kx, kz) :=

1

2π

∫ ∞

−∞
‖H(kx, kz, ω)‖2

HS dω, (2.10)

where ‖ · ‖HS is the Hilbert–Schmidt norm of an operator defined by

‖H‖2
HS := trace(HH∗).

In the case when H is a matrix, ‖ · ‖HS is precisely the Frobenius norm.
The H∞ norm is defined by

[‖H‖∞](kx, kz) := sup
ω

σmax(H(kx, kz, ω)), (2.11)

where σmax is the maximum singular value.
These norms have appealing physical interpretations. We can regard H in (2.9)

as representing the ‘amplification’ or ‘gain’ from d to φ at given frequencies. The
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quantity (2.11) represents a maximization of this gain over input temporal frequencies
and wall-normal shapes (by this we mean the variation of the input as a function
of y). The former is obtained by the maximization over ω and the latter by taking
a maximum singular value. Thus, we can interpret the H∞ norm as the worst case
amplification of deterministic inputs. Furthermore, we can find a frequency ω̄ (the
frequency at which supω is achieved) and input shape d̄(y) (namely, the right singular
function corresponding to the maximum singular value) such that with input

d(x, y, z, t) = d̄(y) ei(kxx+kzz+ω̄t),

the output φ has this worst case amplification, that is∫ ∞

0

∫ 1

−1

φ∗(kx, y, kz, t)φ(kx, y, kz, t) dy dt = [‖H‖∞](kx, kz).

On the other hand, the H2 norm has an interesting stochastic interpretation: it
quantifies the variance (energy) amplification of harmonic (in x and z) stochastic (in
y and t) disturbances at any given (kx, kz). In the fluid mechanics literature, the H2

norm is also referred to as the ensemble average energy density of the statistical steady
state (Farrell & Ioannou 1993b). More generally, the frequency response operator
captures the mapping of second-order statistics from the input to the output random
fields. Let input d be a zero-mean homogenous (in x, z and t) white random field, i.e.
one whose auto-correlation is

E{d(x1, y1, z1, t1) d∗(x2, y2, z2, t2)} = Iδ(x1 − x2, y1 − y2, z1 − z2, t1 − t2),

where I is the 3 × 3 identity matrix, and δ is the Dirac delta function. The output
random field will be stationary in x, z and t (but not in y), and will have correlations
determined by the system’s dynamics. We define the auto-correlation function of φ

after averaging in the wall-normal direction by

Rφ(x, z, t) :=

∫ 1

−1

∫ 1

−1

E{φ(ξ + x, y1, ζ + z, τ + t) φ∗(ξ, y2, ζ, τ )} dy1 dy2.

Note that Rφ contains all the two-point correlation functions in x, z and t . Let Wφ

be the power spectral density (PSD) function of φ obtained by a Fourier transform
of Rφ . It is then a standard fact (VanMarcke 1983) that the PSD is determined from
the system’s frequency response by

Wφ(kx, kz, ω) := trace(H(kx, kz, ω)H∗(kx, kz, ω)) = ||H(kx, kz, ω)||2HS.

Comparing this last expression with (2.10), we see that the H2 norm at each (kx, kz)
captures the total PSD at these wavenumbers after integrating in temporal frequency.
For a more detailed analysis of the statistics of the LNS, we refer the reader
to Jovanović & Bamieh (2001).

We point out that for computing the H2 norm, (2.10) can be determined without
actually integrating in ω. It is a standard fact from linear systems theory (Zhou
et al. 1996) that this quantity can be determined using the solutions of the operator
Lyapunov equations

A(kx, kz)X(kx, kz) + X(kx, kz)A∗(kx, kz) = −B(kx, kz)B∗(kx, kz),

A∗(kx, kz)Y(kx, kz) + Y(kx, kz)A(kx, kz) = −C∗(kx, kz)C(kx, kz),

where A∗, B∗ and C∗ represent adjoints of operators A, B and C (these operators
are precisely defined in Appendix A). The H2 norm is then determined from either
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of the following two expressions[
‖H‖2

2

]
(kx, kz)=trace(X(kx, kz)C∗(kx, kz)C(kx, kz))=trace(Y(kx, kz)B(kx, kz)B∗(kx, kz)).

In the controls literature, operators X(kx, kz) and Y(kx, kz) are, respectively, referred
to as the controllability and observability Gramians (Zhou et al. 1996).

Finally, one of our main aims in this paper is to perform a comparative analysis of
the effects of forcing in the three different coordinate directions on each of the three
velocity fields. We thus need a more detailed analysis of the frequency response from
each input to each output. Note that the input and output operators in (2.3) have
three subcomponents corresponding to each of the inputs and outputs, respectively.
This induces a 3 × 3 matrix decomposition of the frequency response operator as
follows

H(kx, kz, ω) =


Cu

Cv

Cw


 (iωI − A(kx, kz))

−1[Bx By Bz]

=:




Hux(kx, kz, ω) Huy(kx, kz, ω) Huz(kx, kz, ω)

Hvx(kx, kz, ω) Hvy(kx, kz, ω) Hvz(kx, kz, ω)

Hwx(kx, kz, ω) Hwy(kx, kz, ω) Hwz(kx, kz, ω)


, (2.12)

where, for example, Hvz is the response from the forcing dz to the v velocity field,
and similarly for the other 8 responses. By combining the rows and columns of this
3 × 3 matrix, we obtain another decomposition as follows

H(kx, kz, ω) = C(iωI − A)−1[Bx By Bz]

=: [Hx(kx, kz, ω) Hy(kx, kz, ω) Hz(kx, kz, ω)] (2.13)

=


Cu

Cv

Cw


 (iωI − A)−1B =:


Hu(kx, kz, ω)

Hv(kx, kz, ω)

Hw(kx, kz, ω)


, (2.14)

where for example Hv is the response from all three inputs to the v field, while Hx

is the response from dx to all three velocity fields.
In this paper, we are mainly concerned with H2-normlike quantities for systems

(2.2) and (2.6). The numerical results for the H∞ norms are qualitatively similar
to those for the H2 norm (Jovanović 2004). However, the latter is more amenable
to theoretical analysis in that we are able to obtain analytical expressions for the
variances at kx = 0, and we therefore concentrate on the H2 norm case.

3. Frequency responses in subcritical Poiseuille flow with R = 2000

In this section, we consider the NS equations linearized around a nominal velocity
profile of the form U (y) = 1 − y2 at R =2000. We calculate the H2 norms from
different body force inputs to different velocity outputs as functions of spatial
wavenumbers, and discuss the corresponding three-dimensional flow structures that
are most amplified. These turn out to be typically streamwise elongated/spanwise
periodic and oblique. We show how the roles of TS waves, oblique waves and
streamwise vortices and streaks can be explained as input–output resonances of the
spatio-temporal frequency responses. We further analyse the effectiveness of input
field components, and the energy content of u, v and w. Also, we demonstrate that
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Figure 2. Plots of [‖Hrs‖2](kx, kz) in Poiseuille flow with R = 2000.

the wall-normal and spanwise forces have much stronger influence on the velocity
field than the streamwise force, and that the impact of these forces is most powerful
on the streamwise velocity component.

All results presented here are obtained numerically using the scheme described
in Appendix C, with 30 v and ωy basis functions (N =M = 29). By increasing the
number of basis functions, it is confirmed that this resolution is high enough†.
The H2-normlike quantities are determined based on solutions of the corresponding
Lyapunov equations, with 50 × 90 grid points in the wavenumber space (kx, kz). These
points are chosen in the logarithmic scale with (kxmin := 10−4, kxmax := 3.02) and
(kzmin := 10−2, kzmax := 15.84).

The (kx, kz)-parameterized H2 norms of all components of the frequency response
operator are illustrated in figure 2. Different plots correspond to the different elements
of the operator valued matrix on the right-hand side of (2.12). We make the following
observations.

† We observe that in contrast to eigenvalue computations for generator A (which are used in
stability calculations), much less resolution is required for computing system norms. While typically
about 100 points might be required in a collocation scheme for stability calculations in channel
flows, about 20–30 points are adequate to compute norms with very good accuracy. This is perhaps
a reflection of the fact that norms are more ‘robust’ quantities than eigenvalues in channel-flow
problems.
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Input–output amplifications from dy and dz to u attain the largest values. Clearly,
both [‖Huy‖2](kx, kz) and [‖Huz‖2](kx, kz) have fairly similar shapes with distinctive
peaks whose values are at least one order of magnitude larger than the peak values
of all other quantities shown in figure 2. This illustrates that the wall-normal and
spanwise forces have much stronger influence on the velocity field than the streamwise
force, and that the impact of these forces is most powerful on the streamwise velocity
component.

Different components of frequency response peak at different locations in the (kx, kz)-
plane. Hence, the componentwise input–output analysis uncovers several distinct
amplification mechanisms for subcritical transition. These mechanisms are responsible
for creation of streamwise vortices and streaks (peak values at kx ≈ 0, kz ≈ O(1)),
oblique waves (peak values at kx ≈ O(1), kz ≈ O(1)), and TS waves (peak values at
kx ≈ O(1), kz ≈ 0).

The streamwise elongated structures are most amplified by the system’s dynamics,
followed by the oblique perturbations, followed by the TS waves. Clearly, there is about
an order of magnitude difference between the largest peak values taking place at
(kx ≈ 0, kz ≈ O(1)) and at (kx ≈ O(1), kz ≈ O(1)). On the other hand, in Poiseuille
flow with R = 2000 the oblique waves are approximately four times more amplified
than the least-stable LNS modes (TS waves). However, this is not to say that the TS
waves and especially the oblique waves should be neglected in studies of transition.
Either of them can trigger nonlinear terms in the full NS equations. Moreover, the
phase of these perturbations can play an important role when the flow is connected
in feedback with, for example, a controller for drag reduction.

We note that the importance of the streamwise vortices and streaks was thoroughly
studied by Gustavsson (1991); Butler & Farrell (1992); Farrell & Ioannou (1993b);
Reddy & Henningson (1993); Trefethen et al. (1993); Bamieh & Dahleh (2001),
among others. The fact that the oblique waves often produce the greatest transient
amplification was recognized by Farrell & Ioannou (1993a) in the study of the
three-dimensional perturbations to viscous constant shear flow that give the largest
energy growth on a selected time interval. Also, a Karhunen–Loève analysis of
a direct numerical simulation of turbulent channel flow at Rτ = 80 revealed the
presence of energetic oblique waves (Sirovich, Ball & Keefe 1990). Oblique wave
transition scenario was introduced by Schmid & Henningson (1992). This transition
scenario was studied experimentally by Elofsson & Alfredsson (1998) in Poiseuille
flow, and both experimentally and numerically by Berlin, Wiegel & Henningson
(1999) in boundary layers. The transition thresholds in oblique plane channel flow
transition were examined by Reddy et al. (1998), and recently by Chapman (2002).
The identification of the oblique waves as the input–output resonances illustrates
usefulness of the componentwise input–output approach to the analysis of the problem
at hand.

Figure 3 shows the H2 norms of different components of frequency response
operator (2.13). These plots quantify the amplification from inputs in the three spatial
directions to the velocity vector φ = [u v w]T . The square additive property of the
H2 norm implies that these plots can be obtained by summing the rows in figure 2.
We note that:

The external excitations applied in the wall-normal and spanwise directions have a
much bigger impact on the velocity field than the streamwise direction forcing. The
explanation for this observation is given in § 4, where we show that the energy of
three-dimensional streamwise constant perturbations in the presence of either dy or
dz achieves O(R3) amplification. On the other hand, only amplification proportional
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Figure 3. Plots of [‖Hx‖2](kx, kz), [‖Hy‖2](kx, kz), and [‖Hz‖2](kx, kz), in Poiseuille flow
with R = 2000.
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Figure 4. Plots of [‖Hu‖2](kx, kz), [‖Hv‖2](kx, kz), and [‖Hw‖2](kx, kz), in Poiseuille flow
with R = 2000.

to the Reynolds number is achievable when external force in the streamwise direction
is applied, as illustrated in § 4.

Functions [‖Hy‖2](kx, kz) and [‖Hz‖2](kx, kz) achieve their largest values at the
different locations in the (kx, kz)-plane than function [‖Hx‖2](kx, kz). Clearly, the former
two quantities peak at kx = 0 for certain O(1) value of kz. These input–output reson-
ances correspond to the streamwise vortices and streaks. On the other hand, the latter
quantity attains the global maximum at the location where both spatial wavenumbers
have O(1) values. We also observe a local peak at the streamwise wavenumber axis
in figure 3(a). This peak is caused by the least-stable modes of A (TS waves). Even
though the presence of the least-stable modes in figure 3(a) is more prominent than in
figures 3(b) and 3(c), the structures that are more amplified by the system’s dynamics
are still three-dimensional. These structures correspond to the oblique waves.

Figure 4 illustrates the energy content of different velocity components by showing
the kx–kz dependence of the H2 norm of frequency response operator (2.14) These
plots quantify the respective amplification from input vector d := [dx dy dz]

T to
velocity perturbations u, v and w. The square additive property of the H2 norm
implies that these plots can be obtained by summing the columns in figure 2. We
remark that:

The energy content of the streamwise velocity is much bigger than the energy content
of the other two velocity components. The analytical explanation for this observation
is given in § 4, where we explicitly show that the variance of three-dimensional
streamwise velocity perturbations at kx = 0 scales as R3. This is in sharp contrast
with the amplification that v and w experience. Namely, our derivations of § 4
prove that the variance of streamwise constant wall-normal and spanwise velocity
perturbations is only proportional to the Reynolds number.
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Figure 5. Plot of [‖H‖2](kx, kz) in Poiseuille flow with R = 2000.

Functions [‖Hu‖2](kx, kz), [‖Hv‖2](kx, kz) and [‖Hw‖2](kx, kz), respectively, achieve
their largest values on the kz-axis, kx-axis, and at (kx ≈ O(1), kz ≈ O(1)). These peaks
correspond to the streamwise vortices and streaks (figure 4(a)), the least-stable system
modes (figure 4(b)), and the oblique waves (figure 4(c)). Since the evolution of the wall-
normal velocity is governed by the stable Orr–Sommerfeld equation, it is not surprising
that [‖Hv‖2](kx, kz) achieves largest values in the immediate vicinity of the least-stable
modes. The local peak at (kx = 0, kz ≈ O(1)) in figure 4(b) signals a potential for the
transient amplification in the Orr–Sommerfeld equation. However, this amplification
is significantly weaker than the amplification of streamwise elongated structures in
figure 4(a) and oblique perturbations in figure 4(c). We further note that, since both
u and w depend on ωy (cf. (2.3c)) they experience transient amplification due to a
coupling between wall-normal velocity and vorticity perturbations (that is, a vortex
stretching (vortex tilting) mechanism, Landahl 1975, 1980). Namely, the nominal
spanwise vorticity (that is, − U ′) is tilted in the wall-normal direction by the spanwise
changes in v which leads to a transient amplification of ωy . Since for streamwise
constant perturbations, w depends only on v (cf. (2.3c)), the amplification of w at
kx = 0 is limited to O(R), as shown in § 4. Clearly, this amplification becomes larger
when non-zero streamwise wavenumbers are considered. This can be attributed to
the fact that away from the kz-axis, w is a function of both v and ωy (cf. (2.3c)). The
latter quantity achieves much bigger magnitudes than the former owing to the afore-
mentioned vortex tilting mechanism which is responsible for the input–output
resonances observed in figure 4(c). We note that this mechanism does not take place
whenever the nominal shear is zero (that is, U ′ = 0), or when there is no spanwise
variation in the velocity perturbations (that is, kz = 0).

In figure 5, we show the H2 norm of frequency response operator (2.8). This plot
quantifies the aggregate effect of forces in all three spatial directions to all three
velocity components. Clearly, it is difficult to see different amplification mechanisms
here, because of the dominance of the streamwise elongated structures. We remark that
the TS waves generate a local peak at (kx ≈ 1, kz = 0), with a magnitude significantly
lower than that achieved by these prevailing streamwise elongated flow structures. On
the other hand, the previously discussed peaks created by the oblique perturbations
are inconspicuous in figure 5. This demonstrates the utility of componentwise analysis
over the analysis that only accounts for the aggregate effects.
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The numerical computations of this section are strengthened by a rigorous analysis
of the various H2 norms of the streamwise constant three-dimensional channel-flow
perturbations. These analytical considerations are presented in § 4.

4. Dependence of variance amplification on the Reynolds number
We now study the forced LNS equations for streamwise constant three-dimensional

perturbations. In this special case, the model for velocity perturbations is usually
referred to as the two-dimensional three-component (2D/3C) model (Reynolds &
Kassinos 1995). The motivation for analysis of this particular model is twofold.
First, from numerical computations presented in § 3, we observe that the streamwise
constant perturbations experience utmost amplification rates. Secondly, this model is
amenable to a thorough analysis which clarifies the relative strengths of amplification
mechanisms from various forcing directions to velocity field components, as well as
their dependence on the Reynolds number.

The governing dynamics of streamwise constant three-dimensional perturbations
are obtained by setting kx = 0 in (2.2) which yields

∂t

[
ψ1

ψ2

]
=




1

R
L 0

Cp

1

R
S



[
ψ1

ψ2

]
+

[
0 By1 Bz1

Bx2 0 0

]dx

dy

dz


, (4.1a)


u

v

w


 =


 0 Cu2

Cv1 0

Cw1 0


[ψ1

ψ2

]
, (4.1b)

with

L := �−1�2, S := �, Cp := −ikzU
′(y),

Bx2 := ikz, By1 := −k2
z�

−1, Bz1 := −ikz�
−1∂y,

Cu2 := − i

kz

, Cv1 := I, Cw1 :=
i

kz

∂y.

These equations are parameterized by two parameters: the spanwise wavenumber
kz, and the Reynolds number R. The wall-normal velocity and vorticity fields are in
this section respectively, denoted by ψ1(y, kz, t) and ψ2(y, kz, t), with the boundary
conditions ψ1(± 1, kz, t) = ∂yψ1(± 1, kz, t) = ψ2(± 1, kz, t) = 0. We note that the
lower-block-triangular generator in (4.1a) is exponentially stable for any finite R and
any parallel flow U (y). This follows from Appendix B, where the spectral analysis
of the Reynolds-number/nominal-velocity independent, normalized Squire and Orr–
Sommerfeld operators S and L is performed. Thus, the expressions for input–output
gains that we derive in this section are valid for all Reynolds numbers and all nominal
velocity profiles U (y).

We first study the frequency responses (as a function of kz) of each of the com-
ponents of the transfer function (2.12). We do this using the H2 norm, that is

[
‖Hrs‖2

2

]
(kz) :=

1

2π

∫ ∞

−∞
||Hrs(kz, ω)||2HS dω for r = u, v, w and s = x, y, z.

We then investigate the dependence of each of the subsystems on the Reynolds
number. We analytically demonstrate that amplification from both spanwise and



158 M. R. Jovanović and B. Bamieh
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Figure 6. Block diagram of the streamwise constant LNS system (4.1) with Ω := ωR.

wall-normal forcing to streamwise velocity is O(R3), while amplification for all other
components is O(R).

Application of the temporal Fourier transform allows us to represent system (4.1)
in terms of its block diagram shown in figure 6 with Ω := ωR. We note that
the same temporal scaling was previously employed by Gustavsson (1991) in his
undertaking to determine the transient growth of the wall-normal vorticity. Thus,
from this block diagram, it follows that for the streamwise constant perturbations,
the frequency responses from dy and dz to u scale as R2, whereas the responses from
all other inputs to other velocity outputs scale at most linearly with R. In particular,
at kx = 0, the streamwise forcing does not influence the wall-normal and the spanwise
velocity components. It is noteworthy that the coupling term Cp = −ikzU

′ is crucial
for providing this R2-scaling. Namely, we can observe from figure 6 that in the
absence of shear or spanwise variations in the wall-normal velocity perturbation,
all components of operator H(0, kz, ω) in (2.12) are at most proportional to R. This
further exemplifies the importance of the vortex stretching mechanism (Landahl 1975)
in the wall-bounded shear flows. We remark that the numerical experiments of Kim &
Lim (2000) indicated that without the coupling from v to ωy the near-wall turbulence
decays in a fully turbulent channel flow.

We now state the main result whose proof can be found in Appendix D.
Theorem 1 quantifies the energy amplification for each of the components of frequency
response (2.12) at kx = 0.

Theorem 1. For any streamwise constant channel flow with nominal velocity U (y),
the H2 norms of operators Hrs(kz, ω, R) that map ds into r , {r = u, v, w; s = x, y, z},
are given by

[
‖Hux‖2

2

]
(kz)

[
‖Huy‖2

2

]
(kz)

[
‖Huz‖2

2

]
(kz)[

‖Hvx‖2
2

]
(kz)

[
‖Hvy‖2

2

]
(kz)

[
‖Hvz‖2

2

]
(kz)[

‖Hwx‖2
2

]
(kz)

[
‖Hwy‖2

2

]
(kz)

[
‖Hwz‖2

2

]
(kz)


 =


fux(kz)R guy(kz)R

3 guz(kz)R
3

0 fvy(kz)R fvz(kz)R

0 fwy(kz)R fwz(kz)R


,

(4.2)

where the f and g functions are independent of R.

The energy amplification of streamwise constant perturbations scales as R3 from
the forces in the wall-normal and the spanwise directions to the streamwise velocity.
In all other cases, it scales at most as R. In particular, at kx = 0 the streamwise
forcing does not influence the wall-normal and the spanwise velocity components.
This further illustrates the dominance of the streamwise velocity perturbations and
the forces in the remaining two spatial directions for high-Reynolds-number channel
flows (figure 7).
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Figure 7. Plots of frs(kz), {r = u, v,w; s = x, y, z}, guy(kz) and guz(kz). Functions guy(kz)
and guz(kz) are determined for Couette flow.

The expressions for the terms that multiply R in (4.2) are the same for all channel
flows, because these terms depend only on nominal-velocity independent operators L
and S (see Appendix E for details). On the other hand, the expressions for guy and
guz depend on the coupling operator (vortex stretching term from the NS equations)
Cp := −ikzU

′(y), and therefore these terms are nominal-velocity dependent. Whenever
there is either no mean shear or no spanwise variations in the velocity perturbations,
the vortex tilting mechanism is absent and the largest amplification that can be
achieved is proportional to the Reynolds number.

The following corollary of Theorem 1 is obtained by summing the rows in (4.2)
and exploiting the square additive property of the H2 norm. It quantifies the energy
amplification of streamwise constant perturbations for each of the components of
frequency response (2.13).

Corollary 2. For any streamwise constant channel flow with nominal velocity U (y),
the H2 norms of operators Hs(kz, ω, R) that map ds into φ := [u v w]T , {s = x, y, z},
are given by [

‖Hx‖2
2

]
(kz) = fx(kz)R,[

‖Hy‖2
2

]
(kz) = fy(kz)R + gy(kz)R

3,[
‖Hz‖2

2

]
(kz) = fz(kz)R + gz(kz)R

3,


 (4.3)

where {fx := fux, fy := fvy + fwy, fz := fvz + fwz} and {gy := guy, gz := guz}.
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Figure 8. The kz-dependence of fx , fy , fz, gy and gz. Expressions for fx , fy and fz are the
same for all channel flows, as demonstrated in Appendix E.2.1. The terms responsible for the
O(R3) energy amplification are shown in (b) Couette flow and (c) Poiseuille flow.

Figure 8 illustrates the kz-dependence of functions fx , fy , fz, gy and gz. Expressions
for fx , fy and fz are the same for all channel flows, as shown in Appendix E.2.1 where
we derive the analytical formulae for these quantities. On the other hand, both gy and
gz depend on the nominal velocity. In Appendix E.2.4, we determine the analytical
expressions for these two quantities in Couette flow by using the spectral decompos-
itions of the Orr–Sommerfeld and Squire operators. These expressions are given in
terms of rapidly convergent series and they are shown in figure 8(b). The numerically
computed dependence of gy and gz on kz in Poiseuille flow is given in figure 8(c).

Therefore, as already indicated by the numerical computations of § 3, the forces
in the spanwise and wall-normal directions have the strongest influence on the
velocity field. We confirmed this observation by analytical derivations summarized in
Corollary 2 for the streamwise constant perturbations showing that the square of the
H2 norm from dz and dy to velocity vector φ scales as R3. On the other hand, at
kx = 0, the square of the H2 norm from dx to φ scales as R.

The following corollary of Theorem 1 is obtained by summing the columns in (4.2)
and exploiting the square additive property of the H2 norm. It quantifies the energy
amplification of streamwise constant perturbations for each of the components of
frequency response (2.14).

Corollary 3. For any streamwise constant channel flow with nominal velocity U (y),
the H2 norms of operators Hr (kz, ω, R) that map d := [dx dy dz]

T into r , {r = u, v, w},
are given by [

‖Hu‖2
2

]
(kz) = fu(kz)R + gu(kz)R

3,[
‖Hv‖2

2

]
(kz) = fv(kz)R,[

‖Hw‖2
2

]
(kz) = fw(kz)R,


 (4.4)

where {fu := fux, fv := fvy + fvz, fw := fwy + fwz} and gu := guy + guz.

Figure 9 shows the kz-dependence of functions fu, fv , fw and gu. Expressions for
fu, fv and fw are the same for all channel flows, as demonstrated in Appendix E.2.2
where we derive the analytical formulae for these quantities. On the other hand, gu

depends on the underlying mean velocity. In Appendix E.2.2, we derive the analytical
dependence of gu on kz for Couette flow. Figure 9(c) illustrates the numerically
computed kz-dependence of gu in Poiseuille flow.

Thus, the impact of the external excitations is most powerful on the streamwise
velocity component. We confirmed this observation by both numerical computations
of § 3 and analytical derivations summarized in Corollary 3 for the streamwise constant
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Figure 9. The kz-dependence of fu, fv, fw and gu. Expressions for fu, fv and fw are the same
for all channel flows, as demonstrated in Appendix E.2.2. The terms responsible for the O(R3)
energy amplification are shown in (a) Couette flow and (b) Poiseuille flow.

perturbations showing that the square of the H2 norm from d to u scales as R3. On
the other hand, at kx = 0, the square of the H2 norm from d to v and w scales
as R.

It is worth mentioning that Theorem 1 of Bamieh & Dahleh (2001) follows from
Theorem 1 of this section. Namely, by summing all elements in (4.2) and using the
square-additivity of the H2 norm, the aggregate effect of all forces to all velocity com-
ponents is readily obtained. For completeness, we state the main result of Bamieh &
Dahleh (2001) as the following corollary of Theorem 1.

Corollary 4. For any streamwise constant channel flow with nominal velocity U (y),
the H2 norm of operator H(kz, ω, R) that maps d := [dx dy dz]

T into φ := [u v w]T ,
is given by [

‖H‖2
2

]
(kz) = f (kz)R + g(kz)R

3,

where f := fux + fvy + fvz + fwy + fwz = fx + fy + fz = fu + fv + fw and g :=
guy + guz = gy + gz = gu.

As shown in Appendix E, the dependence of variance amplification on the Reynolds
number at kx = 0 has the same form for the ‘unstructured’ and ‘structured’ external
excitations. However, the expressions for functions f and g in Theorem 1 and
Corollaries 2, 3 and 4 are different in these two cases.

In § 5, we study the capability of the streamwise constant near-wall input com-
ponents.

5. Variance amplification of streamwise constant near-wall external excitations
In this section, we study system (2.6) in the presence of streamwise constant three-

dimensional perturbations. By setting kx = 0 in (2.6) we obtain

∂t

[
ψ1

ψ2

]
=




1

R
L 0

Cp

1

R
S



[
ψ1

ψ2

]
+

[
0 By01 Bz01

Bx02 0 0

]dx0

dy0

dz0


, (5.1a)


u

v

w


 =


 0 Cu2

Cv1 0

Cw1 0


[ψ1

ψ2

]
, (5.1b)
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with {Bx02 := ikzκx(y), By01 := −k2
z�

−1κy(y), Bz01 := −ikz�
−1(κ ′

z(y)+κz(y)∂y)}, where
κs(y), for every s = x, y, z, denote arbitrary functions of y, and κ ′

z(y) := dκz(y)/dy.
All other operators have the same meaning as in (4.1).

Since operators A, B and C in (4.1) and (5.1) have the same respective structures,
we conclude that all theorems and corollaries of § 4 that determine scaling with
R of different H2 norms also hold for system (5.1). However, the expressions for
the Reynolds-number-independent quantities are different for the ‘unstructured’ and
‘structured’ external excitations.

5.1. Effectiveness of near-wall external excitations

We next investigate the effectiveness of an input applied in a certain spatial direction
by studying the Reynolds number dependence of [‖Hs‖2

2](kz), where

Hs(kz, ω) := C(kz)(iωI − A(kz))
−1Bs0(kz) (s = x, y, z).

Based on the above remarks, it follows that Corollary 2 holds for both ‘unstructured’
and ‘structured’ external excitations. However, the expressions for functions fx , fy , fz,
gy and gz are different in these two cases. This is illustrated in Appendix E.2.3 and
Appendix E.2.4 where we derive analytical expressions for fx , fy , fz (which are the
same for all channel flows) for

κs(y) := a(1 + coth(a))e−a(y+1) =: κ(y, a), a > 0, ∀ s = x, y, z, (5.2)

and determine the dependence of gy and gz on both kz and a in terms of easily
computable series in Couette flow. This particular ‘pre-modulation’ in y is chosen to
analyse the effectiveness of inputs whose amplitude decays exponentially away from
the lower wall. Clearly, this rate of decay (i.e. degree of localization) can be adjusted
by assigning different values to parameter a. We note that functions f and g in
Corollary 2 now depend on both kz and ‘modulation parameter’ a, e.g. fx = fx(kz, a).

We have normalized κ(y, a) so that∫ 1

−1

κ(y, a) dy = 2, ∀ a > 0,

which allows for comparison between ‘structured’ (in the limit as a → 0) and
‘unstructured’ results. Clearly, in the ‘unstructured’ case there is no ‘pre-modulation’
in y, that is

κ(y) ≡ 1 ⇒
∫ 1

−1

κ(y) dy = 2.

The formulae for functions fx(kz, a), fy(kz, a) and fz(kz, a) are determined in
Appendix E.2.3. Furthermore, the traces of nominal-velocity-dependent operators are
determined in terms of rapidly convergent series for Couette flow in Appendix E.2.4.

The analytical expression for fx(kz, a) is given by (E 22). By taking the limit of
fx(kz, a) as a → 0 we obtain (E 16) which corresponds to the value of fx(kz) for
‘unstructured’ external excitation. Furthermore, as kz → ∞, we have

lim
kz→∞

fx(kz, a) = 0, ∀ a ∈ (0, ∞),

which implies that for any finite value of a > 0, function fx(kz, a) decays to zero
for big enough values of kz. On the other hand, a limit of fx(kz, a) as a → ∞ is
determined by

lim
a→∞

fx(kz, a) = 1
2
, ∀ kz ∈ �,
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Figure 10. The kz-dependence of fx , fy and fz for different values of a.

which suggests that for external excitation that is localized in the vicinity of the
lower wall (large enough values of a) and acts in the streamwise direction influence
of high kz becomes increasingly important. This is illustrated in figure 10 where we
graphically illustrate the dependence of fx on kz for different values of a.

The formulae for fy(kz, a) and fz(kz, a) are given by (E 23). The kz-dependence of
these two quantities for different values of a is shown in figure 10. We note that the
limits of fy(kz, a) and fz(kz, a) as a → 0 are in agreement with the corresponding
formulae (E 17) for the ‘unstructured’ excitation.

The analytical expressions for gy(kz, a) and gz(kz, a) in Couette flow are determined
in Appendix E.2.4. These formulae are expressed in terms of rapidly convergent
series, and they are obtained by performing the spectral decompositions of the
Orr–Sommerfeld and Squire operators. Since R3 multiplies gy(kz, a) and gz(kz, a),
respectively, in the expressions for [‖Hy‖2

2](kz) and [‖Hz‖2
2](kz) (see Corollary 2),

it is relevant to analyse how gy(kz, a) and gz(kz, a) change with their arguments.
Figure 11 shows the dependence of these two quantities on both kz and a. Clearly,
the magnitude of gy decreases sharply as a increases its value. On the other hand,
the value of gz increases for a certain range of a and then it starts decaying at a very
slow rate. Furthermore, for any fixed value of parameter a, both gy and gz achieve
largest values at O(1) values of kz.

The a-dependence of supkz
gy(kz, a), supkz

gz(kz, a) and supkz
gz(kz, a)/supkz

gy(kz, a)
in Couette flow is illustrated in figure 12, with the abscissa in the linear and the
ordinate in the logarithmic scale. Clearly, supkz

gy(kz, a) decays monotonically as a
function of a with a fairly sharp rate of decay, while supkz

gz(kz, a) peaks at a non-zero
value of a and then decays slowly as a increases its value. Figure 12(c) further shows
that supkz

gz(kz, a)/ supkz
gy(kz, a) is a monotonically increasing function of a and

that, for example, at a = 100 function supkz
gz(kz, a) achieves almost four orders of

magnitude larger value than function supkz
gy(kz, a). This indicates that the localized
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Figure 11. Plots of gy(kz, a) and gz(kz, a) in Couette flow.
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spanwise excitations have much stronger influence on the velocity field than the
localized wall-normal excitations. This observation is consistent with recent numerical
work on channel-flow turbulence control using the Lorentz force (Berger et al. 2000;
Du & Karniadakis 2000; Du et al. 2002), where it was concluded that forcing in the
spanwise direction confined within the viscous sub-layer had the strongest effect in
suppressing turbulence. We confirmed this observation by analytical derivations for
the streamwise constant perturbations showing that: for near-wall inputs, the spanwise
forcing has, by far, the biggest impact on the evolution of the velocity field components.

6. Concluding remarks
We consider the NS equations linearized around some parallel channel flow U (y),

in the presence of spatially distributed and temporally varying three-dimensional
body forces viewed as inputs. We carry out an input–output analysis in the frequency
domain to investigate the dependence of different velocity ‘outputs’ (u, v, w) on the dif-
ferent body force ‘inputs’ (dx, dy, dz). We demonstrate that this componentwise analysis
uncovers several amplification mechanisms for subcritical transition, and show how
the roles of TS waves, oblique waves and streamwise vortices and streaks can be
explained as input–output resonances of the spatio-temporal frequency responses.

The effects of the inputs (dx, dy, dz) on velocity fields are dependent on various
parameters. We perform a thorough study of these effects by quantifying them using
system norms (also known as gains or amplifications), namely the so-called H∞ and
H2 norms. We focus on the latter quantity because it is more amenable to theoretical
analysis in that we are able to obtain analytical expressions for the variances of
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streamwise constant perturbations. The numerical results for the H∞ norm are
qualitatively very similar to those for the H2 norm (Jovanović 2004). Moreover,
we investigate the dependence of the H2 norm on spatial frequencies, as well as
the Reynolds number R. This frequency-response analysis yields several conclusions,
one of which is the dominance of streamwise elongated-spanwise periodic (kx ≈ 0,
kz ≈ O(1)) and oblique (kx ≈ O(1), kz ≈ O(1)) effects. We also perform a detailed
analysis of the effect of individual inputs on individual outputs. We analytically
ascertain that for ‘channel-wide external excitations’, the spanwise and wall-normal
forces have the strongest influence on the velocity field; the impact of these forces is
most powerful on the streamwise velocity component. For the streamwise constant
perturbations, we rigorously establish that the square of the H2 norm from dz and
dy to u scales as R3. On the other hand, at kx = 0, the H2 norms of operators from
all other body force inputs to other velocity outputs scale at most as R. Furthermore,
for ‘near-wall excitations’ we demonstrate that dz has, by far, the strongest effect
on the evolution of the velocity field. This observation is consistent with recent
numerical work on channel-flow turbulence control using the Lorentz force, where it
was concluded that the spanwise forcing confined within the viscous sub-layer had the
strongest effect in suppressing turbulence. We confirm this observation by analytical
derivations that quantify the H2 norms of operators from individual inputs (dx , dy

and dz) to the entire velocity vector φ. Also, we calculate system norms as functions of
spatial frequencies, and discuss the corresponding three-dimensional flow structures
that are most amplified. These turn out to be typically streamwise elongated-spanwise
periodic and sometimes oblique, which corresponds to structures commonly observed
in experimental studies and fully nonlinear initial-value simulations in channel flows.

Appendix A. The underlying operators
The underlying Hilbert space for operator A is �OS × L2[−1, 1], where (Reddy &

Henningson 1993)

�OS := {g ∈ L2[−1, 1]; g(2) ∈ L2[−1, 1], g(±1) = 0}.
This operator is an unbounded operator defined on a domain D(A) := D(A11) ×
D(A22). The domain of Squire operator A22 is equal to �OS, and the domain of
Orr–Sommerfeld operator A11 is defined by

D(A11) :=
{
g ∈ �OS; g(4) ∈ L2[−1, 1], g′(±1) = 0

}
.

We endow the state-space �OS × L2[−1, 1] with an inner product

〈ψ1, ψ2〉e := 〈ψ1, Qψ2〉, (A 1)

where Q is a block diagonal linear operator given by

Q :=
1

k2
x + k2

z

[−� 0

0 I

]
.

The inner product on the right-hand side of (A 1) is the standard L2[−1, 1] inner
product. The inner product 〈·, ·〉e determines then the kinetic energy density of a
harmonic perturbation, which is a quadratic form of v and ωy as follows (Butler &
Farrell 1992)

E = 〈ψ, ψ〉e =
1

8

∫ 1

−1

ψ∗Qψ dy =: 〈ψ, Qψ〉. (A 2)
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For the purposes of norm computations, it is important to identify the adjoints of the
relevant operators. The adjoint of an operator G on a Hilbert space with an inner
product 〈·, ·〉e, is defined by

〈ψ1, Gψ2〉e = 〈G∗ψ1, ψ2〉e , (A 3)

which must hold for all ψ1, ψ2 in the Hilbert space �OS × L2[−1, 1]. A∗ can be
determined using (A 3), whereas the adjoints of the operators B and C are, respectively,
given by

〈ψ, Bd〉e = 〈B∗ψ, d〉, (A 4a)

〈φ, Cψ〉 = 〈C∗φ, ψ〉e. (A 4b)

The inner products on the right-hand side of (A 4a) and the left-hand side of (A 4b) are
the standard L2[−1, 1] inner products. Using (A 3), (A 4a) and (A 4b) we determine
A∗, B∗, and C∗ as

A∗ =

[
A∗

11 A∗
21

0 A∗
22

]
, B∗ =




B∗
x

B∗
y

B∗
z


, C∗ = [C∗

u C∗
v C∗

w], (A 5)

where{
A∗

11 = ikxU − ikx�
−1U ′′ +

1

R
�−1�2, A∗

22 = ikxU +
1

R
�, A∗

21 = −ikz�
−1U ′

}
,

{B∗
x = Cu, B∗

y = Cv, B∗
z = Cw}, {C∗

u = Bx, C∗
v = By, C∗

w = Bz}. (A 6)

We remark that

BxB∗
x = C∗

uCu =
1

k2
x + k2

z

[
k2

x�
−1∂yy −kxkz�

−1∂y

−kxkz∂y k2
z

]
,

ByB∗
y = C∗

vCv =

[
−
(
k2

x + k2
z

)
�−1 0

0 0

]
,

BzB∗
z = C∗

wCw =
1

k2
x + k2

z

[
k2

z�
−1∂yy kxkz�

−1∂y

kxkz∂y k2
x

]
,

(A 7)

which in turn implies

BB∗ = C∗C =

[
I 0

0 I

]
. (A 8)

For ‘structured’ external excitations (2.5) we have

Bx0B∗
x0 := Bxκ

2
x B∗

x =
1

k2
x + k2

z

[
k2

x�
−1
(
2κxκ

′
x∂y + κ2

x ∂yy

)
−2kxkz�

−1κxκ
′
x

−kxkzκ
2
x ∂y k2

z κ
2
x

]
,

By0B∗
y0 := Byκ

2
y B∗

y =

[
−
(
k2

x + k2
z

)
�−1κ2

y 0

0 0

]
,

Bz0B∗
z0 := Bzκ

2
z B∗

z =
1

k2
x + k2

z

[
k2

z�
−1
(
2κzκ

′
z∂y + κ2

z ∂yy

)
2kxkz�

−1κzκ
′
z

kxkzκ
2
z ∂y k2

xκ
2
z

]
,

(A 9)
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where κ ′
s := dκs(y)/dy, for s = x, y or z. The expressions (A 5)–(A 9) are used for

norm computations of the spatio-temporal frequency responses.

Appendix B. Spectral analysis of Squire and Orr–Sommerfeld operators at kx = 0

We next perform spectral analysis of the Reynolds-number independent, normalized
Squire and Orr–Sommerfeld operators at kx = 0. These two operators are denoted
by S := � and L := �−1�2, and their domains are respectively determined by �OS

and D(A11). At any fixed kz both S and L are self-adjoint (with respect to the
inner products of L2[−1, 1] and �OS, respectively) with discrete spectra, and they
are negative definite (with respect to the aforementioned inner products). Thus, these
two operators have only negative eigenvalues and generate stable evolutions. We note
that the �OS inner product is given by (Reddy & Henningson 1993)

〈g1, g2〉os := 〈g′
1, g

′
2〉2 + k2

z 〈g1, g2〉2 = −〈g1, �g2〉2.

It is well known that S has the following set of orthonormal eigenfunctions {ϕn}n∈�

with corresponding eigenvalues {γn}n∈�

ϕn(y) := sin
(

1
2
nπ(y + 1)

)
, γn(kz) := −

(
1
4
n2π2 + k2

z

)
, n ∈ �.

The spectral analysis of L was performed by Dolph & Lewis (1958). It was shown
that L has the set of eigenfunctions {σk}k∈�

σk(y, kz, λk)

= Ak

(
cos(pky) − cos(pk)

cosh(kz)
cosh(kzy)

)
+ Bk

(
sin(pky) − sin(pk)

sinh(kz)
sinh(kzy)

)

=: σ1k(y, kz, λk) + σ2k(y, kz, λk),

with corresponding eigenvalues {λk}k∈�

λk := −
(
p2

k + k2
z

)
,

where pk is obtained as a solution to either of the following two equations

pk tan(pk) = −kz tanh(kz), (B 1a)

pk cot(pk) = kz coth(kz). (B 1b)

It can be readily shown (Dolph & Lewis 1958) that (B 1a) and (B 1b) cannot be
satisfied simultaneously. In other words, if p̄k is obtained as a solution to (B 1a)
then p̄k does not satisfy (B 1b), and vice versa. Furthermore, if (B 1a) is satisfied then
{Ak �= 0, Bk ≡ 0}, and if (B 1b) is satisfied then {Ak ≡ 0, Bk �= 0} (Dolph & Lewis
1958), that is

pk tan(pk) = −kz tanh(kz) ⇒ {Ak �= 0, Bk ≡ 0},
pk cot(pk) = kz coth(kz) ⇒ {Ak ≡ 0, Bk �= 0}.

This implies that we can consider separately the spectral decompositions of L in
terms of {σ1k}k∈� and {σ2k}k∈� and combine them to determine the overall solution.
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In particular, the following choices of {Ak}k∈� and {Bk}k∈�

Ak :=

{(
p2

1k + k2
z

)(
1 +

sin(2p1k)

2p1k

)}−1/2

, Bk ≡ 0, p1k tan(p1k) = −kz tanh(kz),

Ak ≡ 0, Bk :=

{(
p2

2k + k2
z

)(
1 − sin(2p2k)

2p2k

)}−1/2

, p2k cot(p2k) = kz coth(kz),

respectively, give the orthonormal sets of eigenfunctions {σ1k}k∈� and {σ2k}k∈�.

Appendix C. Numerical method
In this section, we briefly describe the numerical method used for approximating the

LNS equations. In the spatially invariant directions, frequency response calculations
are done by ‘gridding’ in the wavenumber space (kx, kz). In the wall-normal direction
y, a Galerkin scheme (Boyd 1989) is used based on expansion using a set of
basis functions that satisfy the appropriate boundary conditions (Leonard, personal
communication 1999).

We denote the basis functions for wall-normal velocity (v) and vorticity (ωy) by αn(y)
and βn(y) respectively. They are defined in terms of Chebyshev polynomials (Boyd
1989) as follows:

αn(y) := (1 − y2)2Tn(y), βn(y) := (1 − y2)Tn(y).

Clearly, these basis functions satisfy boundary conditions given by (2.4). If we assume
that the number of v and ωy basis functions is equal to N and M , respectively, we
can express v and ωy as

v(kx, y, kz, t) ≈
N∑

n=0

an(kx, kz, t)αn(y), ωy(kx, y, kz, t) ≈
M∑

n=0

bn(kx, kz, t)βn(y),

where an(kx, kz, t) and bn(kx, kz, t) are the so-called spectral coefficients. These
coefficients are computed as a solution of a first order ODE obtained as a result of
applying the Galerkin scheme to (2.2).

To obtain the corresponding ODE, we must find matrix representations of all opera-
tors in (2.2). We note that these matrix entries can be calculated without numerical
integration by exploiting the recursive relations between Chebyshev polynomials and
their derivatives (Boyd 1989). These matrix representations were developed for the
case of a channel flow linearized around a nominal velocity profile of the form
ū = [U (y) 0 0]T . All numerical computations in this paper were performed using
matlab.

Appendix D. Proof of Theorem 1
From the block diagram representing the LNS system (4.1) at kx = 0 (see figure 6)

it follows that
u

v

w


=




Hux(kz, ω, R) Huy(kz, ω, R) Huz(kz, ω, R)

Hvx(kz, ω, R) Hvy(kz, ω, R) Hvz(kz, ω, R)

Hwx(kz, ω, R) Hwy(kz, ω, R) Hwz(kz, ω, R)




dx

dy

dz




:=




RH̄ux(kz, Ω) R2H̄uy(kz, Ω) R2H̄uz(kz, Ω)

0 RH̄vy(kz, Ω) RH̄vz(kz, Ω)

0 RH̄wy(kz, Ω) RH̄wz(kz, Ω)




dx

dy

dz


 ,
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where Ω := ωR, and


H̄ux(kz, Ω) := Cu2(iΩI − S)−1Bx2,

H̄uy(kz, Ω) := Cu2(iΩI − S)−1Cp(iΩI − L)−1By1,

H̄uz(kz, Ω) := Cu2(iΩI − S)−1Cp(iΩI − L)−1Bz1,

H̄rs(kz, Ω) := Cr1(iΩI − L)−1Bs1, {r = v, w; s = y, z}.

For example, [‖Huy‖2
2](kz) is determined by

[
‖Huy‖2

2

]
(kz) :=

1

2π

∫ ∞

−∞
‖Huy(kz, ω, R)‖2

HS dω

=
1

2π

∫ ∞

−∞
trace(Huy(kz, ω, R)H∗

uy(kz, ω, R)) dω

=
R4

2π

∫ ∞

−∞
trace(H̄uy(kz, Ω)H̄∗

uy(kz, Ω)) dω

=
R3

2π

∫ ∞

−∞
trace(H̄uy(kz, Ω)H̄∗

uy(kz, Ω)) dΩ =: R3guy(kz).

A similar procedure can be used to determine the H2 norms of all other components
of operator H in (2.12), which proves Theorem 1. Corollaries 2, 3 and 4 follow from
Theorem 1 using the square-additivity of the H2 norm.

In Appendix E we show how functions f and g in (4.2) can be obtained based on
solutions of the corresponding operator Lyapunov equations.

Appendix E. Exact determination of H2 norms
In § E.1, we derive expressions for the componentwise H2 norms of streamwise

constant LNS system (4.1) in terms of solutions to the corresponding Lyapunov
equations. In § E.2, we use these relationships to determine the explicit kz-dependence
of functions f and g in Corollaries 2 and 3 for both ‘unstructured’ and ‘structured’
external excitations. The nominal-flow-dependent functions g are determined in
Couette flow. The main analytical tool we use in § E.2 is the formula for the trace of a
class of differential operators defined by forced two-point boundary-value state-space
realizations (TPBVSR). This formula was derived by Jovanović & Bamieh (2005).

From § 4 and Appendix A it follows that at kx = 0

A =




1

R
�−1�2 0

−ikzU
′ 1

R
�


 =:




1

R
L 0

Cp

1

R
S


,

A∗ =




1

R
�−1�2 −ikz�

−1U ′

0
1

R
�


 =:




1

R
L C∗

p

0
1

R
S


,

Mx = Nu =

[
0 0

0 I

]
, My = Nv =

[
−k2

z�
−1 0

0 0

]
, Mz = Nw =

[
�−1∂yy 0

0 0

]
,

where operators Ms and Nr are defined as Ms := BsB∗
s , for s = x, y, z, and

Nr := C∗
r Cr , for r = u, v, w. The results presented here also hold for system (2.6)



170 M. R. Jovanović and B. Bamieh

with ‘structured’ external excitations since operators

Bx0B∗
x0 =

[
0 0

0 κ2
u

]
, By0B∗

y0 =

[−k2
z�

−1κ2
v 0

0 0

]
,

Bz0B∗
z0 =

[
�−1

(
2κwκ ′

w∂y + κ2
w∂yy

)
0

0 0

]
,

have the same respective structures as operators Mx , My and Mz. As remarked in
§ 5, the dependence of the variance amplification on the Reynolds number at kx = 0
has the same form for the ‘unstructured’ and ‘structured’ external excitations. However,
the expressions for functions f and g in Theorem 1, Corollary 2, Corollary 3 and
Corollary 4 are different in these two cases.

E.1. Expressions for H2 norms via Lyapunov equations

In this subsection, we provide alternative proofs of Theorem 1, Corollary 2 and
Corollary 3 by exploiting the fact that the H2 norms of frequency response operators
Hrs , Hs and Hr , {r = u, v, w; s = x, y, z}, can be determined based on solutions
of the corresponding Lyapunov equations. The procedure outlined below is most
convenient for determination of the Reynolds number independent functions f and
g in (4.2), (4.3) and (4.4).

E.1.1. Controllability Gramians and functions f and g in Theorem 1

For each r and s, [‖Hrs‖2
2](kz) can be expressed in terms of the solution to an

operator Lyapunov equation

AXs + XsA∗ = −Ms (E 1)

as [‖Hrs‖2
2](kz) = trace(NrXs), where Xs is a 2 × 2 block operator whose structure

we denote by

Xs :=

[
Xs11 X∗

s0

Xs0 Xs22

]
.

Using the structure of operators Nr and Xs it follows that [‖Hrs‖2
2](kz) can be

determined as[
‖Hrs‖2

2

]
(kz) = trace(NrXs) = trace(Nr11Xs11) + trace(Nr22Xs22).

The lower block triangular structure of A transforms (E 1) into the following set of
conveniently coupled operator Sylvester equations

LXs11 + Xs11L = −RMs11, (E 2a)

SXs0 + Xs0L = −RCpXs11, (E 2b)

SXs22 + Xs22S = −R(Ms22 + CpX∗
s0 + Xs0C∗

p). (E 2c)

If the solutions of this system of equations at R = 1 are respectively denoted by Ps11,
Ps0, and Ps22, then (E 2) simplifies to

LPs11 + Ps11L = −Ms11, (E 3a)

SPs0 + Ps0L = −CpPs11, (E 3b)

SPs222
+ Ps222

S = −(CpP∗
s0 + Ps0C∗

p), (E 3c)

SPs221
+ Ps221

S = −Ms22, (E 3d )
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where Ps22 = Ps221
+ Ps222

. Clearly, (E 3a) and (E 3d) can be respectively solved for
Ps11 and Ps221

. Once Ps11 is determined, (E 3b) can be solved to yield Ps0. Finally,
Ps0 can be used to determine solution to (E 3c).

Linearity of (E 2) implies that its solutions can be expressed in terms of solutions
to (E 3) as

{Xs11 = RPs11, Xs0 = R2Ps0, Xs22 = RPs221
+ R3Ps222

},
which yields[

‖Hrs‖2
2

]
(kz) =

(
trace(Nr11Ps11)+trace

(
Nr22Ps221

))
R+trace

(
Nr22Ps222

)
R3. (E 4)

Using the definitions of operators Nr and Ms , it follows that

{Nu11 ≡ 0, Nv22 ≡ 0, Nw22 ≡ 0},
{Px11 ≡ 0, Px222

≡ 0

Py221
≡ 0, Pz221

≡ 0

}
,

which in combination with (E 4) gives the following expressions for functions f and
g in (4.2)
fux(kz) guy(kz) guz(kz)

0 fvy(kz) fvz(kz)

0 fwy(kz) fwz(kz)




=


trace(Nu22(kz)Px221

(kz)) trace(Nu22(kz)Py222
(kz)) trace(Nu22(kz)Pz222

(kz))

0 trace(Nv11(kz)Py11(kz)) trace(Nv11(kz)Pz11(kz))

0 trace(Nw11(kz)Py11(kz)) trace(Nw11(kz)Pz11(kz))


.

(E 5)

These expressions are most convenient for determination of functions f and g in
Corollary 2.

E.1.2. Observability Gramians and functions f and g in Theorem 1

Alternatively, [‖Hrs‖2
2](kz) can be, for every {r = u, v, w; s = x, y, z}, expressed in

terms of the solution to an operator Lyapunov equation of the form

A∗Yr + YrA = −Nr (E 6)

as [‖Hrs‖2
2](kz) = trace(YrMs), where Yr is a 2 × 2 block operator whose structure

we denote by

Yr :=

[
Yr11 Y∗

r0

Yr0 Yr22

]
.

Using the structure of operators Ms and Yr it follows that [‖Hrs‖2
2](kz) can be

determined as[
‖Hrs‖2

2

]
(kz) = trace(YrMs) = trace(Yr11Ms11) + trace(Yr22Ms22).

The lower block triangular structure of A renders (E 6) into the following set of
conveniently coupled operator Sylvester equations

SYr22 + Yr22S = −RNr22, (E 7a)

SYr0 + Yr0L = −RYr22Cp, (E 7b)

LYr11 + Yr11L = −R(Nr11 + C∗
pYr0 + Y∗

r0Cp). (E 7c)
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If the solutions of this system of equations at R = 1 are respectively denoted by Rr22,
Rr0 and Rr11, then (E 7) simplifies to

SRr22 + Rr22S = −Nr22, (E 8a)

SRr0 + Rr0L = −Rr22Cp, (E 8b)

LRr112
+ Rr112

L = −(C∗
pRr0 + R∗

r0Cp), (E 8c)

LRr111
+ Rr111

L = −Nr11, (E 8d )

where Rr11 = Rr111
+ Rr112

. Clearly, (E 8a) and (E 8d) can be respectively solved for
Rr22 and Rr111

. Once Rr22 is determined, (E 8b) can be solved to yield Rr0. Finally,
Rr0 can be used to determine the solution to (E 8c).

Linearity of (E 7) implies that its solutions can be expressed in terms of solutions
to (E 8) as

{Yr22 = RRr22, Yr0 = R2Rr0, Yr11 = RRr111
+ R3Rr112

},
which yields[

‖Hrs‖2
2

]
(kz) = (trace(Rr22Ms22) + trace(Rr111

Ms11))R + trace(Rr112
Ms11)R

3. (E 9)

Using the definitions of operators Ms , and Nr , it follows that

{Mx11 ≡ 0, My22 ≡ 0, Mz22 ≡ 0},
{Ru111

≡ 0, {Rv22 ≡ 0, Rv112
≡ 0}, {Rw22 ≡ 0, Rw112

≡ 0}},
which in combination with (E 9) gives the following expressions for functions f and
g in (4.2)
fux(kz) guy(kz) guz(kz)

0 fvy(kz) fvz(kz)

0 fwy(kz) fwz(kz)




=


trace(Ru22(kz)Mx22(kz)) trace(Ru112

(kz)My11(kz)) trace(Ru112
(kz)Mz11(kz))

0 trace(Rv111
(kz)My11(kz)) trace(Rv111

(kz)Mz11(kz))

0 trace(Rw111
(kz)My11(kz)) trace(Rw111

(kz)Mz11(kz))


.

(E 10)

These expressions are most convenient for determination of functions f and g in
Corollary 3.

E.1.3. Expressions for functions f and g in Corollary 2 via Lyapunov equations

Corollary 2 follows from Theorem 1 and square additivity of the H2 norm. Thus,
for every s = x, y, z, the H2 norm of operator Hs from ds to φ := [u v w]T is given
by [

‖Hs‖2
2

]
(kz) =

[
‖Hus‖2

2

]
(kz) +

[
‖Hvs‖2

2

]
(kz) +

[
‖Hws‖2

2

]
(kz). (E 11)

Therefore, combination of (E 5) and (E 11) with Nu22 = Nv11 + Nw11 = I yields[
‖Hx‖2

2

]
(kz) = trace(Px221

(kz))R =: fx(kz)R,[
‖Hy‖2

2

]
(kz) = trace(Py11(kz))R + trace(Py222

(kz))R
3 =: fy(kz)R + gy(kz)R

3,[
‖Hz‖2

2

]
(kz) = trace(Pz11(kz))R + trace(Pz222

(kz))R
3 =: fz(kz)R + gz(kz)R

3,

which provides an alternative proof of Corollary 2, and gives convenient expres-
sions for functions fx , fy , fz, gy , gz in terms of solutions to the corresponding
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Lyapunov equations. In § E.2, we combine these expressions with the trace formula
of Jovanović & Bamieh (2005) to derive formulae for {fx(kz), fy(kz), fz(kz), gy(kz),
gz(kz)} for LNS systems (4.1) and (5.1) with ‘unstructured’ and ‘structured’ external
excitations. Functions gy and gz are determined for Couette flow.

E.1.4. Expressions for functions f and g in Corollary 3 via Lyapunov equations

Corollary 3 follows from Theorem 1 and square additivity of the H2 norm. Thus,
for every r = u, v, w, the H2 norm of operator Hr from d := [dx dy dz]

T to r is
given by [

‖Hr‖2
2

]
(kz) =

[
‖Hrx‖2

2

]
(kz) +

[
‖Hry‖2

2

]
(kz) +

[
‖Hrz‖2

2

]
(kz). (E 12)

Therefore, combination of (E 10) and (E 12) with Mx22 = My11 + Mz11 = I, yields[
‖Hu‖2

2

]
(kz) = trace(Ru22(kz))R + trace(Ru112

(kz))R
3 =: fu(kz)R + gu(kz)R

3,[
‖Hv‖2

2

]
(kz) = trace(Rv111

(kz))R =: fv(kz)R,[
‖Hw‖2

2

]
(kz) = trace(Rw111

(kz))R =: fw(kz)R,

which provides an alternative proof of Corollary 3, and gives convenient expres-
sions for functions fu, fv , fw and gu in terms of solutions to the corresponding
Lyapunov equations. In § E.2, we combine these expressions with the trace formula of
Jovanović & Bamieh (2005) to derive formulae for {fu(kz), fv(kz), fw(kz), gu(kz)} for
LNS system (4.1) with ‘unstructured’ external excitations. Function gu is determined
for Couette flow.

E.2. Formulae for operator traces

In this subsection, we derive analytical formulae for traces of operators that appear
in the expressions for [‖Hs‖2

2](kz), {s = x, y, z}, and [‖Hr‖2
2](kz), {r = u, v, w}. The

main analytical tool we use here is the formula for the trace of a class of differential
operators defined by forced TPBVSR. This formula was derived by Jovanović &
Bamieh (2005). In the process, we exploit the fact that some of the traces of interest
were already determined by Bamieh & Dahleh (2001).

Unstructured external excitations: determination of nominal velocity independent traces

For system (4.1) with ‘unstructured’ external excitations, the nominal velocity indepen-
dent operators (whose traces we want to determine) can be represented by a well-posed
TPBVSR with constant coefficients in y

F :




x ′(y) = Ax(y) + Bf (y),

g(y) = Cx(y),

0 = L1x(−1) + L2x(1), y ∈ [−1, 1].

(E 13)

Thus, the traces of these operators can be obtained using the trace formula
of Jovanović & Bamieh (2005) as

trace(F) = tr

(
CB − (L1 + L2e

2A)−1L2

[
0 I

]
exp

{
2

[
A 0

BC A

]}[
I

0

])
. (E 14)

This formula is employed to determine explicit analytical expressions for functions
fr (kz), {r = u, v, w}, and fs(kz), {s = x, y, z} in Corollaries 2 and 3.
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E.2.1. Formulae for fx(kz), fy(kz) and fz(kz)

We recall that fx(kz), fy(kz) and fz(kz) are respectively determined by
trace(Px221

(kz)), trace(Py11(kz)) and trace(Pz11(kz)), where operators Px221
, Py11 and

Pz11 satisfy

SPx221
+ Px221

S = −I, (E 15a)

LPy11 + Py11L = −
(
−k2

z�
−1
)
, (E 15b)

LPz11 + Pz11L = −�−1∂yy. (E 15c)

The solution of (E 15a) is given by Px221
= −(1/2)S−1 which in turn implies (Bamieh

& Dahleh 2001)†

fx(kz) := trace
(
Px221

(kz)
)

=
2kz coth(2kz) − 1

4k2
z

. (E 16)

On the other hand, application of Lemma 2 of Bamieh & Dahleh (2001) to (E 15b)
and (E 15c), respectively yields

trace(Py11(kz)) = − 1
2
trace

(
L−1

(
−k2

z�
−1
))

= 1
2
k2

z trace((�2)−1),

trace(Pz11(kz)) = − 1
2
trace(L−1�−1∂yy) = − 1

2
trace((�2)−1∂yy).

Therefore, the remaining problem amounts to determination of traces of operators
(�2)−1 and (�2)−1∂yy whose definitions are given by

(�2)−1 : f1 �−→ g1 ⇔ f1 = g
(4)
1 − 2k2

z g
′′
1 + k4

z g1, g1(±1) = g′
1(±1) = 0,

(�2)−1∂yy : f2 �−→ g2 ⇔ f ′′
2 = g

(4)
2 − 2k2

z g
′′
2 + k4

z g2, g2(±1) = g′
2(±1) = 0.

For notational convenience, we have suppressed the dependence of fi and gj on kz,

e.g. fi(y) := fi(y, kz), i = 1, 2. Similarly, f
(r)
i (y) := drfi(y, kz)/dyr .

These two operators can be represented by their state-space realizations as follows

(�2)−1 :




x ′(y) =




0 0 0 −k4
z

1 0 0 0

0 1 0 2k2
z

0 0 1 0


 x(y) +




1

0

0

0


 f1(y),

g1(y) = [0 0 0 1] x(y),

0 =

[
02×2 I2×2

02×2 02×2

]
x(−1) +

[
02×2 02×2

02×2 I2×2

]
x(1), y ∈ [−1, 1],

(�2)−1∂yy :




z′(y) =




0 0 0 −k4
z

1 0 0 0

0 1 0 2k2
z

0 0 1 0


 z(y) +




0

0

1

0


 f2(y),

g2(y) = [0 0 0 1] z(y),

0 =

[
02×2 I2×2

02×2 02×2

]
z(−1) +

[
02×2 02×2

02×2 I2×2

]
z(1), y ∈ [−1, 1].

† Expression (27) in Bamieh & Dahleh (2001) should read (2kz coth(2kz) − 1)/(4k2
z ).
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The realizations of both operators are in form (E 13) and thus, formula (E 14)
can be used to determine their traces. Since both realizations are parameterized by
spanwise wavenumber, the traces of underlying operators are kz-dependent as well.
With the help of mathematica we obtain the following formulae for trace(Py11(kz))
and trace(Pz11(kz)):

fy(kz) = 1
2
k2

z trace((�2)−1) = −16k4
z + 24k2

z + 3kz sinh(4kz) − 9 sinh2(2kz)

24k2
z

(
4k2

z − sinh2(2kz)
) ,

(E 17)

fz(kz) = − 1
2
trace((�2)−1∂yy) =

16k4
z − 3kz sinh(4kz) + 3 sinh2(2kz)

24k2
z

(
4k2

z − sinh2(2kz)
) .

It worth mentioning that the above determined traces do not depend on the form
of channel flow. On the other hand, the traces of operators Py222

(kz) and Pz222
(kz)

(that is, gy(kz) and gz(kz)) are not nominal velocity independent. Rather, they depend
on the underlying channel flow through its dependence on U ′. The derivation of the
analytical expressions for these traces in Couette flow is also given in this section.

E.2.2. Formulae for fu(kz), fv(kz), fw(kz), and gu(kz)

We recall that fu(kz), fv(kz) and fw(kz) are determined by trace(Ru22(kz)), trace
(Rv111

(kz)) and trace(Rw111
(kz)), where operators Ru22, Rv111

and Rw111
, respectively,

satisfy

SRu22 + Ru22S = −I, (E 18a)

LRv111
+ Rv111

L = −
(
−k2

z�
−1
)
, (E 18b)

LRw111
+ Rw111

L = −�−1∂yy. (E 18c)

Comparison of (E 15) and (E 18) implies

fu(kz) := trace(Ru22(kz)) = trace(Px221
(kz)) =: fx(kz),

fv(kz) := trace(Rv111
(kz)) = trace(Py11(kz)) =: fy(kz),

fw(kz) := trace(Rw111
(kz)) = trace(Pz11(kz)) =: fz(kz),

where the expressions for fx , fy and fz are given by (E 16) and (E 17). On the other
hand, gu(kz) := trace(Ru112

(kz)) is a function of a nominal velocity. In Couette flow,
the formula for gu(kz) can be obtained by comparing the expression for [‖H‖2

2](kz)
of § 4 with its counterpart of Bamieh & Dahleh (2001). By doing so, we obtain the
following formula:

gu(kz) := trace(Ru112
(kz))

= 1
4

∞∑
n=1

k2
z

γ 4
n




1 − n2π2

γn

[
2kz(cosh(2kz) − 1)

γn(sinh(2kz) − 2kz)
+

1

4(αn coth(αn) − kz coth(kz))

]
n even,

1 − n2π2

γn

[
2kz(cosh(2kz) + 1)

γn(sinh(2kz) + 2kz)
+

1

4(αn tanh(αn) − kz tanh(kz))

]
n odd,

where

γn := −
(

n2π2

4
+ k2

z

)
, αn :=

√
2k2

z +
n2π2

4
, n � 1.

Our current efforts are directed towards development of the formula for gu(kz) in
Poiseuille flow.
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Structured external excitations: determination of nominal velocity independent traces

In this subsection, we consider streamwise constant LNS system (5.1) with ‘structured’
external excitations, and derive the explicit analytical expressions for functions fx , fy

and fz in Corollary 2. This is done for ‘pre-modulation’ in the wall-normal direction
defined by (5.2). In this case, the nominal velocity independent operators (whose
traces we want to determine) can be represented by a well-posed TPBVSR

F :




x ′(y) = Ax(y) + e−2a(y+1)Bf (y),

g(y) = Cx(y),

0 = L1x(−1) + L2x(1), y ∈ [−1, 1],

(E 19)

where A, B , C, L1 and L2 denote y-independent matrices of appropriate dimensions.
Thus, the traces of these operators can be obtained using the trace formula
of Jovanović & Bamieh (2005)

trace(F)=
1−e−4a

4a
tr(CB)− tr

(
(L1 +L2e

2A)−1L2[0 I] exp

{
2

[
A−2aI 0

BC A

]}[
I

0

])
,

(E 20)

This formula is employed to determine explicit analytical expressions for functions
fs(kz, a), for every s = x, y, z, in Corollary 2.

E.2.3. Formulae for fx(kz, a), fy(kz, a) and fz(kz, a)

We recall that fx(kz, a), fy(kz, a) and fz(kz, a) are determined by trace(Px221
(kz, a)),

trace(Py11(kz, a)) and trace(Pz11(kz, a)), where operators Px221
, Py11 and Pz11

respectively satisfy

SPx221
+ Px221

S = −κ2, (E 21a)

LPy11 + Py11L = −
(
−k2

z�
−1κ2

)
, (E 21b)

LPz11 + Pz11L = −�−1(2κκ ′∂y + κ2∂yy). (E 21c)

Application of Lemma 2 of Bamieh & Dahleh (2001) to (E 21a), (E 21b) and (E 21c)
in combination with (5.2) yields

trace(Px221
(kz, a)) = − 1

2
trace(S−1κ2) = − 1

2
a2(1 + coth(a))2 trace

(
�−1e−2a(y+1)

)
,

trace(Py11(kz, a)) = − 1
2
trace

(
L−1

(
− k2

z�
−1κ2

))
= 1

2
k2

z a
2(1 + coth(a))2 trace

(
(�2)−1e−2a(y+1)

)
,

trace(Pz11(kz, a)) = − 1
2
trace(L−1�−1(2κκ ′∂y + κ2∂yy))

= − 1
2
a2(1 + coth(a))2 trace

(
(�2)−1e−2a(y+1)(∂yy − 2a∂y)

)
.

Therefore, the remaining problem amounts to determination of traces of operators

�−1e−2a(y+1) : f1 �−→ g1 ⇔ e−2a(y+1)f1 = g′′
1 − k2

zg1,

(�2)−1e−2a(y+1) : f2 �−→ g2 ⇔ e−2a(y+1)f2 = g
(4)
2 − 2k2

zg
′′
2 + k4

z g2,

(�2)−1e−2a(y+1)(∂yy − 2a∂y) : f3 �−→ g3 ⇔ e−2a(y+1)(f ′′
3 − 2af ′

3) = g
(4)
3 − 2k2

z g
′′
3 + k4

z g3,

with boundary conditions: g1(±1) = 0, g2(±1) = g′
2(±1) = 0, and g3(±1) =

g′
3(±1) = 0.
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Operators �−1e−2a(y+1) and (�2)−1e−2a(y+1) can be represented by their state-space
realizations as follows

�−1e−2a(y+1) :




q ′(y) =

[
0 k2

z

1 0

]
q(y) + e−2a(y+1)

[
1

0

]
f1(y),

g1(y) = [0 1] q(y),

0 =

[
0 1

0 0

]
q(−1) +

[
0 0

0 1

]
q(1), y ∈ [−1, 1],

(�2)−1e−2a(y+1) :




x ′(y) =



0 2k2

z 0 −k4
z

1 0 0 0

0 1 0 0

0 0 1 0


 x(y) + e−2a(y+1)




1

0

0

0


 f2(y),

g2(y) = [0 0 0 1] x(y),

0 =

[
02×2 I2×2

02×2 02×2

]
x(−1) +

[
02×2 02×2

02×2 I2×2

]
x(1), y ∈ [−1, 1].

On the other hand, a realization of operator (�2)−1e−2a(y+1)(∂yy − 2a∂y) is given by




z′(y) =




0 2k2
z 0 −k4

z

1 0 0 0

0 1 0 0

0 0 1 0


 z(y) + e−2a(y+1)




2k2
z

2a

1

0


 f3(y),

g3(y) = [0 0 0 1] z(y),

0 =

[
02×2 I2×2

02×2 02×2

]
z(−1) +

[
02×2 02×2

02×2 I2×2

]
z(1), y ∈ [−1, 1].

Note that, for any given pair (kz, a), the realizations of all three operators are of
the form (E 19). We note that since all realizations are parameterized by spanwise
wavenumber kz and parameter a, the traces of underlying operators are going to
depend on kz and a as well.

Using (E 20), with the help of mathematica we obtain the following formulae for
traces of operators Px221

(kz, a), Py11(kz, a) and Pz11(kz, a)

fx(kz, a) =




a{−a − a coth2(a) + 2kz coth(2kz) coth(a)}
4
(
k2

z − a2
) kz �= a,

1

8
{1 + coth2(a) − a csch3(a) sech(a)} kz = a,

(E 22)

fy(kz, a)

=




e−2ak2
z (1 + coth(a))2

8a
(
a2 − k2

z

)3
(1 + 8k2

z − cosh(4kz))
hy(kz, a) kz �= a,

csch2(a){(3 − 288a2) cosh(2a) − 3 cosh(6a) + 8a(21 + 32a2) sinh(2a)}
384(1 + 8a2 − cosh(4a))

kz = a,
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fz(kz, a)

=




e−4a(1 + coth(a))2

8a
(
a2 − k2

z

)3(
1 + 8k2

z − cosh(4kz)
)hz(kz, a) kz �= a,

csch2(a){3(5 + 32a2) cosh(2a) − 15 cosh(6a) + 8a(9 + 32a2) sinh(2a)}
384(1 + 8a2 − cosh(4a))

kz = a,

(E 23)

where

hy(kz, a) := a cosh(2a){a4 + (akz)
2(3 + 8a2) − 16

(
ak2

z

)2
+ 8k6

z − a2
(
a2 + 3k2

z

)
cosh(4kz)}

+ kz sinh(2a){−4
(
3a4kz − 4a2k3

z + k5
z

)
+ a2

(
3a2 + k2

z

)
sinh(4kz)},

hz(kz, a) := a cosh(2a){−8k8
z + 2a6

(
1 + 8k2

z

)
+ a4

(
k2

z − 40k4
z

)
− a2

(
2a4 + (akz)

2 + k4
z

)
cosh(4kz) + a2

(
k4

z + 32k6
z

)
} + kz sinh(2a)

× {4kz

(
−4a6 + 7a4k2

z − 4a2k4
z + k6

z

)
+ a2

(
4a4 − a2k2

z + k4
z

)
sinh(4kz)}.

Determination of nominal velocity dependent traces

Next, we determine traces of nominal-velocity-dependent operators Ps222
, s = y, z, for

both ‘unstructured’ and ‘structured’ external excitations in Couette flow. While we are
not able to solve for operators Py222

and Pz222
explicitly, we are able to express their

traces in terms of easily computable series. This is accomplished at the expense of
doing a spectral decomposition of operators L and S (see Appendix B for details).

E.2.4. Determination of trace(Ps222
)

We recall that gs , for every s = y, z, is determined by trace(Ps222
), where operator

Ps222
satisfies

LPs11 + Ps11L = −Ms11, (E 24a)

SPs0 + Ps0L = −CpPs11, (E 24b)

SPs222
+ Ps222

S = −(CpP∗
s0 + Ps0C∗

p). (E 24c)

Solutions to (E 24a) and (E 24b) are respectively given by

Ps11 =

∫ ∞

0

eLtMs11e
Lt dt, (E 25a)

Ps0 =

∫ ∞

0

eStCpPs11e
Lt dt, (E 25b)

and trace(Ps222
) can be determined as

gs := trace(Ps222
) = − 1

2
trace(S−1(CpP∗

s0 + Ps0C∗
p)). (E 26)

Combination of (E 25b) and (E 26) yields

gs = − 1
2
trace

(
S−1CpPs11

∫ ∞

0

eLtC∗
peSt dt

)

− 1
2
trace

(
S−1Cp

∫ ∞

0

eLtPs11C∗
peSt dt

)
=: gs1

+ gs2
.
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The inherent difficulty is that we cannot determine the above integrals explicitly.
However, as we now show, the traces can still be determined by carrying out a
spectral decomposition of operators L and S.

In order to evaluate gs1
and gs2

we need the following Lemma.

Lemma 5. Let {γn}n∈�, {ϕn}n∈� be the eigenvalues and eigenfunctions of the operator
S, then for any trace class operators F and G

trace

(
F
∫ ∞

0

eLtGeSt dt

)
= −

∑
n∈�

〈ϕn, F(L + γnI)
−1Gϕn〉.

Proof. Let the spectral decompositions of S and L be

S =
∑
n∈�

γnE
S
n , L =

∑
m∈�

λmEL
m ,

where ES
n and EL

n are the spectral projections of S and L, respectively, that is
ES

n f := 〈ϕn, f 〉ϕn and EL
m f := 〈σm, f 〉osσm. We can then compute∫ ∞

0

eLtGeSt dt =

∫ ∞

0

{∑
m∈�

eλmtEL
m

}
G
{∑

n∈�

eγntES
n

}
dt

=
∑
n∈�

∑
m∈�

{∫ ∞

0

e(λm+γn)t dt

}
EL

m GES
n

= −
∑
n∈�

∑
m∈�

1

(λm + γn)
EL

m GES
n

= −
∑
n∈�

(L + γnI)
−1GES

n ,

where in the last equation we made a choice to recombine the spectral decomposition
of L. Now, the trace of any operator H can be calculated using any orthonormal
basis set {ϕi}i∈� by trace(H) =

∑
i∈�〈ϕi, Hϕi〉. Therefore

trace

(
F
∫ ∞

0

eLtGeSt dt

)
= − trace(F

∑
n∈�

(L + γnI)
−1GES

n )

= −
∑
i∈�

〈ϕi, F
∑
n∈�

(L + γnI)
−1GES

n ϕi〉

= −
∑
n∈�

〈ϕn, F(L + γnI)
−1Gϕn〉.

Similarly, by performing a spectral decomposition of L we can express Ps11 as

Ps11 = −
∑
k∈�

(L + λkI)
−1Ms11E

L
k .

We are now able to express gs1
and gs2

as

gs1
= − 1

2
trace

(
S−1CpPs11

∫ ∞

0

eLtC∗
peSt dt

)

= − 1
2

∑
n∈�

∑
k∈�

〈
ϕn, S−1Cp(L + λkI)

−1Ms11E
L
k (L + γnI)

−1C∗
pϕn

〉
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= − 1
2

∑
n∈�

∑
k∈�

〈
(L + λkI)

−1C∗
pS−1ϕn, Ms11E

L
k (L + γnI)

−1C∗
pϕn

〉
os

= − 1
2

∑
n∈�

∑
k∈�

〈(L + γnI)
−1σk, C∗

pϕn〉os〈(L + λkI)
−1C∗

pS−1ϕn, Ms11σk〉os,

and

gs2
= − 1

2
trace

(
S−1Cp

∫ ∞

0

eLtPs11C∗
peSt dt

)

= − 1
2

∑
n∈�

∑
k∈�

〈
ϕn, S−1Cp(L + γnI)

−1(L + λkI)
−1Ms11E

L
k C∗

pϕn

〉

= − 1
2

∑
n∈�

∑
k∈�

〈
(L + λkI)

−1(L + γnI)
−1C∗

pS−1ϕn, Ms11E
L
k C∗

pϕn

〉
os

= − 1
2

∑
n∈�

∑
k∈�

〈σk, C∗
pϕn〉os〈(L + λkI)

−1(L + γnI)
−1C∗

pS−1ϕn, Ms11σk〉os .

In particular, for Couette flow we have

C∗
p = −ikz�

−1 ⇒




C∗
pϕn = − ikz

γn

ϕn,

C∗
pS−1ϕn = − ikz

γ 2
n

ϕn,

which in turn implies

gs1
= − 1

2

∑
n∈�

∑
k∈�

k2
z

γ 3
n

〈(L + γnI)
−1σk, ϕn〉os〈(L + λkI)

−1ϕn, Ms11σk〉os

= − 1
2

∑
n∈�

∑
k∈�

k2
z

γ 3
n

1

(λk + γn)
〈σk, ϕn〉os〈(L + λkI)

−1ϕn, Ms11σk〉os

= − 1
2

∑
n∈�

∑
k∈�

∑
m∈�

k2
z

γ 3
n

1

(λk + γn)(λm + λk)
〈σk, ϕn〉os 〈σm, ϕn〉os 〈σm, Ms11σk〉os ,

where we arrived at the last equality by performing the spectral decomposition of
operator (L + λkI )−1. Similarly,

gs2
= − 1

2

∑
n∈�

∑
k∈�

k2
z

γ 3
n

〈σk, ϕn〉os 〈(L + λkI)
−1(L + γnI)

−1ϕn, Ms11σk〉os

= − 1
2

∑
n∈�

∑
k∈�

∑
m∈�

k2
z

γ 3
n

1

(λm + λk)(λm + γn)
〈σk, ϕn〉os 〈σm, ϕn〉os 〈σm, Ms11σk〉os .

Hence,

gs = − 1
2

∑
n,k,m∈�

k2
z

γ 3
n

λk + λm + 2γn

(λm + λk)(λk + γn)(λm + γn)
〈σk, ϕn〉os 〈σm, ϕn〉os 〈σm, Ms11σk〉os



Componentwise energy amplification in channel flows 181

= − 1
2
k2

z

∑
n,k,m∈�




λ1kλ1m(λ1k + λ1m + 2γn)AkAm(nπ)2 cos(p1k) cos(p1m)

γ 3
n (λ1m + λ1k)

(
λ2

1k − γ 2
n

)(
λ2

1m − γ 2
n

) 〈σ1m, Ms11σ1k〉os

n − odd,

λ2kλ2m(λ2k + λ2m + 2γn)BkBm(nπ)2 sin(p2k) sin(p2m)

γ 3
n (λ2m + λ2k)

(
λ2

2k − γ 2
n

)(
λ2

2m − γ 2
n

) 〈σ2m, Ms11σ2k〉os

n − even,

where

p1k tan(p1k) = −kz tanh(kz), λ1k := −
(
p2

1k + k2
z

)
, Ak :=

{
(−λ1k)

(
1 +

sin(2p1k)

2p1k

)}−1/2

,

p2k cot(p2k) = kz coth(kz), λ2k := −
(
p2

2k + k2
z

)
, Bk :=

{
(−λ2k)

(
1 − sin(2p2k)

2p2k

)}−1/2

,

and

σ1k := Ak

{
cos(p1ky) − cos(p1k)

cosh(kz)
cosh(kzy)

}
,

σ2k := Bk

{
sin(p2ky) − sin(p2k)

sinh(kz)
sinh(kzy)

}
.

Therefore, the remaining task amounts to evaluation of inner products 〈σ1m,

Ms11σ1k〉os and 〈σ2m, Ms11σ2k〉os for s = y, z for both ‘unstructured’ and ‘structured’
disturbances.

E.2.5. Formulae for gy(kz) and gz(kz) in Couette flow

We recall that for ‘unstructured’ disturbances My11 = −k2
z�

−1 and Mz11 = �−1∂yy .
Thus,

〈σim, My11σik〉
os

= k2
z 〈σim, σik〉2 , 〈σim, Mz11σik〉os = − 〈σim, σ ′′

ik〉2 , ∀ i = 1, 2,

where σ ′′
ik(y) := d2σik(y)/dy2. We evaluate these inner products in mathematica to

obtain

〈σ1m, My11σ1k〉
os

=




k2
zAkAm cos(p1k) cos(p1m)

(
tanh(kz)

kz

+ sech2(kz)

)
, m �= k,

k2
z

{
A2

k cos2(p1k)

(
tanh(kz)

kz

+ sech2(kz)

)
− 1

λ1k

}
, m = k,

〈σ2m, My11σ2k〉
os

=




k2
zBkBm sin(p2k) sin(p2m)

(
coth(kz)

kz

− csch2(kz)

)
, m �= k,

k2
z

{
B2

k sin2(p2k)

(
coth(kz)

kz

− csch2(kz)

)
− 1

λ2k

}
, m = k,

〈σ1m, Mz11σ1k〉os =




− k2
zAkAm cos(p1k) cos(p1m)

(
tanh(kz)

kz

+ sech2(kz)

)
, m �= k,

1 − k2
z

{
A2

k cos2(p1k)

(
tanh(kz)

kz

+ sech2(kz)

)
− 1

λ1k

}
, m = k,

〈σ2m, Mz11σ2k〉os =




−k2
zBkBm sin(p2k) sin(p2m)

(
coth(kz)

kz

− csch2(kz)

)
, m �= k,

1 − k2
z

{
B2

k sin2(p2k)

(
coth(kz)

kz

− csch2(kz)

)
− 1

λ2k

}
, m = k.
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E.2.6. Formulae for gy(kz, a) and gz(kz, a) in Couette flow

We recall that for ‘structured’ disturbances with ‘pre-modulation’ in y given by (5.2)

My11 = −k2
z a

2(1 + coth(a))2�−1e−2a(y+1),

Mz11 = a2(1 + coth(a))2�−1{e−2a(y+1)(∂yy − 2a∂y)}.

Thus,

〈σim, My11σik〉
os

= k2
z a

2(1 + coth(a))2
〈
σim, e−2a(y+1)σik

〉
2
, ∀ i = 1, 2,

〈σim, Mz11σik〉os = − a2(1 + coth(a))2
〈
σim, e−2a(y+1)(σ ′′

ik − 2aσ ′
ik)
〉

2
, ∀ i = 1, 2,

where σ ′
ik(y) := dσik(y)/dy. The analytical expressions for these inner products can

be readily determined in mathematica.
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Jovanović, M. R. & Bamieh, B. 2001 Modelling flow statistics using the linearized Navier–Stokes
equations. In Proc. of the 40th IEEE Conf. on Decision and Control , pp. 4944–4949. Orlando,
FL.
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